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In view of several practical ramifications of this problem, computational-analytical 
techniques for calculating waves induced by heaving arbitrary bodies in narrow tanks 
have been developed, including nonlinear wave groups produced near tank resonance. 
These feature computational near-field solutions matched with appropriate far-field 
solutions. In the linear case, the far field is provided by linear mode superposition. In 
the nonlinear case, the far field is described by a suitable nonlinear evolution equation 
of the cubic Schrodinger type. Matching techniques were developed. Calculations were 
successfully carried out and the results confirm the important effect of tank walls on 
added mass and damping. 

Results of computations have been compared with some data obtained with a 
conical wavemaker in a narrow tank. Pronounced nonlinear wave groups were 
obtained near resonance, and these are well reproduced in some detail by the nonlinear 
theory and computations, without considering any effects of dissipation. 

The related problem of resonant wave groups produced by a segmented paddle 
wavemaker has also been treated by analysis and subject to computation, with good 
general agreement with past experiments. The technique features matching near- and 
far-field computations using energy considerations. 

1. Introduction 
We carried out some years ago our first experimental studies of shaped wavemakers 

(Kolaini 1989; Tulin & Kolaini 1988); the majority of our observations were for a cone 
which heaved on the tank centreline. The observed wave patterns change dramatically 
in the vicinity of the frequency corresponding to the first (symmetrical) natural 
transverse mode (first cut-off frequency), and we observed striking effects there, 
including the suppression of the planar mode and the generation of nonlinear groups 
of sloshing (transverse) waves. Subsequently we have carried out analyses and 
numerical computations to explain these observations quantitatively. 

The present paper is closely related to two areas of work in the literature. The first 
area concerns analytical studies of wave effects due to oscillations of a truncated 
cylinder in a tank, utilizing the linear free-surface approximation, see Yeung & Sphaier 
(1989 a, b). The second area concerns theoretical and experimental studies of nonlinear 
wave group formation by a symmetrical wavemaker operating near the first cut-off 
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(Kit, Shemer & Miloh 1987). The first set of authors focused on the prediction of added 
mass and damping for heave as well as surge, pitch and sway, over a wide range of 
frequencies, utilizing linear analytical solutions in series form. In their impressive work, 
they found sharp but finite peaks and sometimes discontinuities in the computed values 
of their dimensionless coefficients at the successive cut-off frequencies. The second set 
of authors concentrated on the measurement and prediction of the nonlinear 
modulated sloshing wave patterns in the tank near the first cut-off frequency; these 
were produced by a segmented symmetric paddle wavemaker which was operated so 
as always to produce zero mean paddle displacement and thus avoid the production of 
planar waves. 

The forces on oscillating bodies are the integration of pressures resulting from the 
near-field motions, while the wave patterns in the body of the tank themselves define 
the far-field motions. Yeung & Sphaier avoided the problem of connecting the near and 
far fields by choosing a body, the truncated cylinder, for which they are able to obtain 
analytical solutions, including both propagating and evanescent modes, satisfying the 
linear boundary conditions on the wavemaker, the free surface and the tank walls. Kit 
et al. are largely concerned with wave groups in the far field, which they model with 
an appropriate nonlinear evolution equation. They have attempted to connect this far- 
field model and the wavemaker itself by linearizing the wavemaker boundary 
conditions and applying them on the back wall of the tank. The resulting theory was 
able to produce intermittent wave group behaviour only after the introduction of large 
damping, empirically determined. 

In our own work we have dealt with both the linear regime (Problem I) of Yeung & 
Sphaier and the nonlinear regime (Problems I1 and 111) of Kit et al. For both regimes 
we distinguish between the near and far fields. In the near field, in the case of heaving 
bodies, we employ a boundary-element plus multiple-image computational method ; 
for Problem I, linearized boundary conditions were satisfied on the undisturbed body 
and free surface; in Problem 11 the exact boundary conditions were satisfied on the real 
boundaries. In the far field we employ different representations in the two cases. In 
Problem I, we utilize a series in terms of normal (free wave) modes, omitting only 
evanescent modes with rapid decay near the wavemaker. In Problem 11, which applies 
near a cut-off frequency, we utilize the free propagating wave mode plus a nonlinear 
evolution equation which describes the behaviour of the resonant sloshing mode. This 
equation is determined using a multiple-scale analysis following the technique used by 
Jones (1984) and Miles (1985) to treat cross-waves; the original derivation of the 
nonlinear cubic Schrodinger equation for wave problems in ducts goes back to Aranha, 
Yue & Mei (1982). 

In both Problems I and 11, the near- and far-field solutions are required to match on 
a suitable downtank plane across the tank and the solutions are found simultaneously. 
The method has the advantage that it may be applied to arbitrary bodies. 

In Problem I we have made computations for a series of heaving bodies of conical 
shape with elliptic cross-section; these were for a range of shapes and relative axes: 
downtank/crosstank 2 1. The circular cross-section (true cone) was studied most 
extensively, as it was the subject of earlier experiments. These calculations were 
originally suggested to explain the observed disappearance of the planar mode during 
oscillation of the cone at the first cut-off, and they did succeed in confirming this 
observation. As we shall see, however, this striking phenomena is not at all general, 
depending for a given tank on both the cross-section area and shape of the heaving 
body. For the cone, we have made calculations of added mass and damping up to and 
near the first cut-off, and found behaviour very similar to that found by Yeung & 
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Sphaier for the truncated cylinder. In particular, we have found that the sharp peaks 
in added mass and damping near the first cut-off have a finite value, which we believe 
to be actual and not a result of numerical difficulties near the resonant singularity. 

In Problem I1 we have made computations for the heaving cone tested by Kolaini 
(1 989). These calculations reproduced the observed phenomena very well, including 
wave group size, shape, spacing and propagation speed, and the observed amplitude 
cut-off effect. No dissipation or other empirical adjustments to the theory were 
required. 

In this paper we also deal separately with the specific case of a paddle-driven 
nonlinear sloshing wave (Kit et al.) (Problem 111), produced near tank resonance. An 
appropriate boundary condition near the wavemaker is derived based on an energy 
balance, and this purely inviscid theory leads to a stronger periodical wave group than 
measured. When a correction is made for energy dissipation at the wavemaker, good 
agreement in shape, speed, and amplitude of propagating groups can be obtained with 
the data of Kit et al. (1987). 

2. Basic equations 
Consider a heaving wavemaker with characteristic lengthscale D, operating at one 

end of a uniform horizontal channel of breadth b in which the undisturbed depth of 
liquid is d, the angular frequency of the periodic motion of the wavemaker is o, a is the 
stroke of the wavemaker and g is the acceleration due to gravity. The flow is assumed 
to be incompressible, inviscid and irrotational. Dimensionless variables are defined 
using a as an amplitude scale, k-' = g/02  as a lengthscale and o-l as a timescale. Then 
the exact equations to be satisfied are: 

V2@ = 0, (2.1 a)  

a@ ar a@ a7 
az at axiaxs 

-+r = -5€-- 
a@ 
at 

_-_ - 

at z = €7, (2.1 b)  
a m @  

---- ax, ax, I 
where E = ka;  

- _  - 0 at y = +$bk (sidewalls), (2.1 c) a@ 
aY 

a@ 
aZ 

- 0 at z = -dk (bottom), (2.1 d )  _ -  

(2.1 e)  
a@ 
- = n,(x, y ,  z) sin ( t )  at x =f(y, z,  e sin t )  (wavemaker), 
an 

a@ 
- = O  at x = 0 (backwall). 
an (2. If) 

We shall consider separately here two problems : 
Problem I : linear: E, 6 small ; frequency domain. 
Problem 11: Nonlinear: e, 6 (= a /D)  not small; initial boundary value problem; 

oscillations started from rest: 
@(x,y,z;O) = 0. (2.1 g )  
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x=x' 

so = s, + Sf + ssw + s, 
I = image field 

( ) represents hidden field 

FIGURE 1 .  Side, front and top views of a large body in a tank showing the division of the fields 
into near, far and image. 

In the case of Problem 11, the radiation condition is applied downtank: 
@(x,y,z, t)+O as x+m. (2.1 h) 

In the case of the frequency domain calculation (Problem I), it is assumed that the 
wave energy is flowing downtank only (no reflections considered). 

Problem I1 is especially appropriate in the vicinity of resonant frequencies where the 
solutions of Problem I become unbounded. 

The approach used for both problems is to divide the flow field into a near field (near 
the wavemaker) and a far field (downtank) where the two separate solutions are 
matched at an appropriate cross-section (x = x,) (see figure l), which is chosen to be 
far enough from the wavemaker that the decaying wave modes generated there may be 
neglected. The near field is to be determined by the boundary element method, while 
the far field is to be described in an analytic manner. 

Assuming a flow symmetric about the channel centreplane, the field to be computed 
may be taken as bounded by the centreplane, wavemaker surface, matching plane and 
the side, bottom, and back walls. The effects of the centreplane, bottom and back walls 
may be taken into account by use of suitable image systems. There are seven images 
of the near-field boundary elements, see figure 1 .  

We note that in the general case of a non-symmetric wavemaker shape, one can use 
three images of the near-field boundary elements to remove the bottom and back walls. 

3. Near field 
3.1. Problem 11 

The near field @(so) and the velocity normal to so, Gn(s0), are related through Green's 
third formula : 
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where so = sY +sf+s,, + s,; n is the normal to the boundary in the outward direction 
from the fluid domain; p = x, and q = xg; the Green’s function G(p,q)  is a simple 
source (1 / I p  - 41) plus its seven similar source images. 

In (3. l ) ,  Qn(sS,) and @&,) are known, (2.1 c, e). The exact free-surface shape 7, and 
@(sf) may be determined at each time step through integration of the following 
relations which apply exactly on sf: 

( 3 . 2 ~ )  

(3.26) 

( 3 . 2 ~ )  

where V@(sf) is known at the previous time step; therefore @(sf) can be taken as 
known. 

Both @(s,) and @(s,) are unknown. They must, however, match their corresponding 
far-field values on s, and are therefore related through far-field relationships. These 
relationships will be discussed subsequently. 

3.2. Problem I 
In this case, E is taken as zero in (2 .1);  @ = $ e-it, where g5 is complex; and the 
equivalent of ( 3 . 1 )  is 

where G ( p , q )  is the same as above. 
In the linear case, $(sf) = $,(sf), where sf is the undisturbed free surface. As in 

Problem 11, #,(sSw) and #,(sw) are known. On s,, we will require matching of the near 
and far field, see $ 5 .  

4. Far field 
4.1. Problem I 

The linear far-field free wave modes in the tank are well known, and are represented 
by three series (in dimensional form): 

(4.1 a)  

(4.1 b) 

@ = @I + @I1 + @III, 

n* 

where = x A ,  ei(kznz-wt) cos (k,, y )  cosh k,(z+d) ,  
n=o 

where 
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FIGURE 2. Dispersion relation for surface gravity waves in a tank (schematic): ----, asymmetric 
transverse mode; -, symmetric mode; Qni2, cut-off frequencies. 

The wavenumbers, k,, and k,, in (4.2) are given by the set of dispersion relations 

w 2  = gk, tanh (k, d ) ;  w2 = -gk,, tan (k,, d). (4.3) 
The first compatibility equation (4.2b) reveals that a sequence of propagating wave 

solutions exists. Each successive solution begins at a cut-off frequency, for which 
k,  (given by (4.3)) is equal to transverse wavenumbers, kyn, which are multiples of the 
half-tank wavenumber, n.rc/b, see figure 2. 

In the solution (4.1) the first term comprises a finite series of propagating modes for 
transverse wavenumbers up to and including the preceding cut-off wavenumber, the 
second comprises an infinite series of evanescent modes for transverse wavenumbers 
larger than the preceding cut-off wavenumber, the third comprises a double infinite 
series of evanescent modes for all combinations of transverse and vertical wave- 
numbers. The asterisk in (4.1) denotes the cut-off condition. 

In the case where the wavemaker operates just below (subcritical) or above 
(supercritical) the first (symmetrical) cut-off frequency, SZ, = (2ng/b)‘/’, only two of 
the wave solutions given by (4.1), are important in the far field, where most of the 
evanescent waves have died : 

w < O1: r$ = A eiz cosh (z+kd)+Bexp [ - ( A ’ x ) ~ / ~ ]  cos --y cosh ( z + k d ) ;  (4.4a) (2 ) 
$2, < w < Q2 : r$ = A eix cosh ( z  + kd) + B exp [i( - A’x)’”~ cos --y cosh ( z  + kd), (Z ) 

(4.4 b) 

where (4.5) 

is a small parameter of the problem, and the complex numbers A and B are to be 
determined by solving the entire problem coupling the near and far fields. 

It is seen that the B-component in (4.4) changes across the cut-off frequency, SZ,, 
from a decaying mode (subcritical) to a propagating mode (supercritical). Since only 
propagating modes are associated with damping, this has the consequence that B 
contributes to the damping only for supercritical conditions, resulting in a discontinuity 
in damping across 52,. The added mass is associated with modes of @ out of phase with 
the stroke, both propagating and decaying. 

It is fundamental that energy supplied to a given mode (the damping) will propagate 
downtank at the group velocity cg of that mode. As a result, for a given quantity of 
modal damping, the modal energy density within the far field will vary as (cg b)-l. 
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It is easily shown that within the framework of linear theory, cg varies as (- h’)l/’, 
and thus disappears at GI. As a result, unbounded energy density normally appears at 
the cut-off frequency and destroys the validity of the linearized theory. It is interesting 
to realize that this occurs even in the case of finite damping. 

4.2. Problem 11 
Here we consider only tanks sufficiently deep (d>:b) so that the deep-water 
approximation suffices near the first cut-off. As discussed in the Introduction, an 
evolution equation for the intermittent wave groups may be determined by a multiple- 
scale analysis. Following Jones (1984), the slow variables which correctly scale the 
wave group phenomena are 

x= €X, 7 = e2t. (4.6) 
The potential and wave elevation are expanded in e :  

@ = Q~ + e@z + € 2 ~ ~  + 0(€3) ,  

7 = + cv2 + 2r3  + o(e3). 

(4.7a) 
(4.7b) 

Multiple-scale analysis produces first- and second-order solutions. The latter are very 
lengthy in the case where a planar wave coexists near O,(A =I= 0). For brevity we give 
here only the case A = 0 for 

= A ez ei(”-t) +cos ( y )  ez[C(X, r) cos ( t )  +D(X, 7)  sin ( t ) ] ,  (4.8 a) 

rl = iA ez ei(”-t) + cos ( y )  ez[C(x, 7) sin ( t )  - D(X, r )  cos (t)],  (4.8 b) 
@’ = 32CD cos (2t) + (0’ - C2) sin (2t)], ( 4 . 9 ~ )  
rz = cos (2y)i[(D2 - C’) sin (2t) - 2CD sin (2t) + (0’ + C’)], (4.9 b)  

where C, D are defined in terms of a complex evolution function: F(X, 7; A) = C+iD. 
The detuning parameter h arises naturally, and defines the closeness to the resonant 
frequency. It is 

and 7’: 

(4.10) 

where we note that h = h‘/2s2. 

differential evolution equation for F(X, 7; A). We have found 
A third-order solvability equation is found in the form of a nonlinear partial 

where 

(4.1 1 )  

so that in the presence of planar waves J replaces h as the detuning parameter; it 
expresses the influence of already existing planar waves of amplitude A upon the 
generation and propagation of the sloshing wave groups. 

5. Matching and numerical details 
5.1. Problem I 

Boundary conditions on so are given, except on s, where the near and far fields are 
required to match. For w < G,, the far field is represented by only two modes, A and 
B, see (4.4). The matching is accomplished by requiring $Fear) = $?) at each grid 
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point on s, and requiring two integrals of $ overs, to match in the near and far fields. 
These integrals are r I,, $(near) cosh (z + kd) dz dy = rk $(far) cosh ( z  + kd)  dz dy 

- - A ,iz o,bka(sinh 1 (2dk) + 2dk), (5.1 a) 

= B exp [i( -A')'''X] +bk+(sinh (2dk) + 2dk). (5.1 b) 

As a consequence, $(near) = $(far) on s,. 
The technique described above differs from that used earlier by Yeung (1975), who 

matched the near- and far-field velocity potentials at each control point in the matching 
plane and was therefore required to use as many evanescent and propagating modes 
as the number of matching points. By utilizing the orthogonal conditions between wave 
modes, the integral matching technique (Yao 1992) used in the present work eliminates 
that requirement and also ensures the continuity of $ across s,. We prefer the present 
technique since it eliminates very small pivot elements due to certain evanescent modes 
and avoids a stiff matrix. 

All of the variables in (3.3) and (4.4) are complex, so separation into real and 
imaginary parts doubles the number of equations. The resulting matrix needs only to 
be solved separately for each frequency, and was solved by the generalized minimal 
residual method; approximately 60 seconds CPU time per frequency was required on 
the IBM 9000. Constant boundary elements were utilized and the control points were 
taken at the panel centre. Convergence tests were carried out. Approximately 700 
panels were utilized on so and convergence within 5 YO is estimated. 

5.2. Problem I1 
The nonlinear evolution equation is discretized by a semi-implicit finite-difference 
scheme of the Crank-Nicolson type. The nonlinear term is quasi-linearized by the 
explicit estimation as in Aranha et al. (1982). The space step for the far field was chosen 
as AX = 0.2, and the time step (At)  was chosen as one twentieth of the wavemaker 
period. In order to eliminate the influence of the far end of the tank, the domain of 
calculation was two to three times as long as the actual one. The solution, F, was taken 
as zero at the end of the tank. The motion started from rest and F was determined 
simultaneously with the solution of the near-field problem. 

Matching was accomplished by requiring @Fear) = @$:) on s, and that two 
integrals of the fields match at s,. One of these is an integral of @ over s,, as in 
Problem I, and the other an integral of 7 over the tank width at x,: 

Wear) cos ( y )  ez dz dy = rk rdk @ifar) cos ( y )  ez dz dy 

= [C(x,, 7) cos ( t )  + D(x,, 7) sin (t)]ibk, ( 5 . 2 ~ )  

7(near) cos ( y )  dy = y p )  cos ( y )  dy 

(5.2b) 
rk 

= [C(X,,T) sin ( t ) -D(x, ,  7) cos (t)]ibk. 
r 
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These integrals allow the determination of C(x,,t) and D(x,,t) through the matrix 
solution at each time step. We note that there is a truncation error of order (qk) involved 
in (5.2a). 

Since the sloshing wave forms near the wavemaker and has a slow variation 
downtank, the number of panels in the near field is reduced to approximately two 
thirds of that in Problem I, and thereby the number of near-field equations to one third, 
which makes the computation feasible. 

Each complete case shown in figure 7 (about 7000 time steps) involved 10 h CPU 
time on the IBM 9000; or about 7 s per time step. 

6. Paddle-driven resonance 
Kit et al. (1987), Shemer & Kit (1988) and Shemer, Chamesse & Kit (1989) carried 

out extensive experimental studies of nonlinear sloshing wave group formation using 
a four-segment paddle-type wavemaker oscillating in the vicinity of the first 
(symmetrical) cut-off frequency with the prescribed motion preventing the generation 
of planar waves. 

We treat this problem (Problem 111) herein with a different approach than they 
utilized, first trying to understand the nature of the near field and to determine a proper 
boundary condition for the far-field sloshing wave. 

6.1. Evolution equation 
An evolution equation, (4.1 l), has been given earlier, governing the far-field sloshing 
wave. Although using a different scaling and parameters, (4.1 1) is fully equivalent to 
that derived by Aranha et al. (1982) and Kit et al. (1987) except for the addition here 
of the effect of co-existing planar waves. This equivalence can be easily shown by 
dimensionalizing the evolution equations. They then all have the same form, 

The evolution equation, (4.1 l), must now be supplemented by appropriate boundary 
conditions. For the wavemaker in an infinite channel, (4.1 1) requires the specification 
of either F, or some derivative of I;, or a combination of both, continuously in time. 
The specification of the appropriate boundary condition is a delicate matter, to be 
discussed below. 

6.2. Boundary condition 
We now consider a simple example of a paddle wavemaker which will not generate 
planar waves, and take its displacement, in the x-direction, to be in dimensionless form 

(6.2) x = cf( y, z )  sin t x E cos Y ez sin t .  

The linear solution of this problem, which is given in the Appendix, is instructive. 
In that solution, the boundary condition in terms of downtank velocity on the rear wall 
(wavemaker) has no contribution from the propagating wave, but is satisfied by the 
decaying wave alone. This latter wave does not, however, contribute to the work done 
by the wavemaker, since it is in phase with the displacement of the wavemaker. To 
know the work, it is necessary to know the dynamic pressure, q5t, on the wavemaker. 
The linear theory shows that the far-field progressive wave begins at a distance from 
the wavemaker varying as (2h)'l2s; therefore, for h of order one or less and small 6, the 
pressure in the far field may be directly applied at the wavemaker. In this way, a 
boundary condition for the far field may be derived from a balance between the work 
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done by the wavemaker, and the energy propagated into the far field. An alternative 
is to specify the boundary condition in terms of either the transverse or vertical 
velocities, which are also continuous through the near and far fields in a linear theory. 
These two approaches will lead to the same form of the boundary condition for the 
sloshing wave, i.e. for F. However, the latter is more difficult to formulate 
quantitatively. So the energy balance approach is used here. Furthermore, the former 
allows empirical adjustments to be made for dissipation at the wavemaker, which was 
believed substantial in the paddle experiments. 

For the velocity potential near the wavemaker, @(x, y ,  z ,  t), in the near-resonant case, 
we take, @ = q5D + q5, where q5D represents the decaying wave modes, (4. l), and @ is the 
propagating mode defined by (4.8). The boundary condition at the wavemaker can be 
written as 

ads afa@ afa@ 
ax ay ay a2 a2 
--e-- sin t-e-- sin t = f cos t at x = $sin t. 

Further, we make an expansion of (6.3) for small e about x = 0 (or X = 0). Then, 
keeping in mind that aq5/ax (or eaq5/aX) has the same order as eaq5/i3y and ei3$/az, 
the boundary condition at the wavemaker, corresponding to lowest order in e, is 

e: %= fcos t. 
ax 

This is consistent with the result of linear theory (see the Appendix): the linearized 
boundary condition of (6.3) is satisfied by decaying wave modes. 

In accordance with the earlier discussion, we apply the hydrodynamic pressure, due 
to the far-field sloshing wave, directly on the wavemaker surface. The work done by 
the wavemaker is 

= IOT Jr Ikd -pD cos2 ( Y )  ezz cos2 ( t )  dz dy dt, (6.5) 

where Ei is the energy extraction within each wavemaker period, P is the linearized 
dynamic pressure provided by the progressive wave on the wavemaker, approximated 
by -&, and Qn is the normal velocity on the wavemaker, approximated by aq5,/ax 
(6.4). 

It is seen that the work done by the wavemaker depends only upon the far-field 
potential which is in phase with the wavemaker motion. Consistent with this result, the 
linear theory finds that the propagating mode evaluated at the wavemaker is in phase 
with the latter. Therefore, we take here, 

C(O,7) = 0. (6.6) 
The energy input at the wavemaker propagates as a sloshing wave with the group 

velocity C,, and the total outgoing energy per period, E,, proportional to twice the 
kinetic energy density at the wavemaker, 

T 2x 

= C, lo lo lkd pD2 eZz sin2 (t) dz dy dt. (6.7) 
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Equating Ei to E,,, the boundary condition at the wavemaker becomes 

. 1  
F ( ~ , T )  = -ia, = -I-, 

2c, 
where C, is still unknown. So an iteration is needed to solve the problem. 

Shemer & Kit (1988) and Shemer et al. (1989) show, in their experiment, that there 
is high dissipation at the wavemaker since there are large gaps between the paddles and 
a pair of angles lying vertically on each paddle, which cause strong separation and 
vortex shedding even in the case when all segments are operated in phase. The 
experiment also shows that the removal of the angles from the paddles caused a 
marked difference in the observed sloshing wave behaviour in the tank, where more 
rapidly modulated sloshing wave groups were observed. On the basis of this evidence, 
the numerical prediction, with the inviscid boundary condition (6.Q can be expected 
to produce a more rapidly modulated periodical sloshing wave group. 

In order to reproduce the experiment results, the dissipation near the wavemaker 
needs to be considered. The energy balance then became, 

(6.9) E,, = Ei -ED = (1 - 7) Ei, 
where the damping ratio, y, must be determined experimentally, or, as in this case, 
numerically to match the experimental data. 

Then the boundary condition near the wavemaker (6.8) becomes 

1 
F(O,T) = -ia, = -i(l -y)-. 

2c, 
(6.10) 

The boundary condition (6.8) or (6.10) will ensure a nearly constant value of 
amplitude and phase of F(0, t )  near the wavemaker as observed in the experiment (Kit 
et al. 1987; Shemer et al. 1989). 

7. Numerical results and comparisons 
The heaving experiments (Problems I1 and I) of Kolaini (1989) and Yao (1992) were 

carried out in a wave tank of cross-section 3 ft square and length 75 ft with a conical 
wavemaker of 76" total angle, and with family of conical bodies of elliptical cross- 
section; the average water depth was 60cm, the average draught of the conical 
wavemaker was 23  cm and its diameter was 33.3 cm. 

7.1. Problem I 
The amplitude of the propagating planar wave in the case of the conical body was 
observed to disappear at 52, during the tests. In figure 3, the results of linear 
calculations confirm a very small value of the wave amplitude there (about 0.5 % of the 
stroke). However, in the case of the widest tank calculated (b /D  = 6.0), the wave 
amplitude at 52, is only slightly smaller than its maximum value. 

The behaviour of the planar wave amplitude approaching 9, was found to depend 
upon the body shape. The results of calculations for conical bodies of constant total 
volume but of various elliptical cross-sections are shown in figure 4; note that the depth 
in this case was increased over that in figure 3, in order to accentuate the effects. These 
reveal that elongation of the body along the wavemaker alleviates the tendency for the 
wave to disappear, whereas its elongation downtank accelerates its disappearance. 
These results show, too, that the observation of disappearance at the cut-off frequency 
for the cone wavemaker was fortuitous. 

8 FLM 276 
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FIGURE 3. Non-dimensional amplitude of the planar wave versus frequency for a half cone 
wavemaker with various tank widths. D = 0.33 m, h = 0.21 m. 
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FIGURE 4. Non-dimensional amplitude of the planar wave versus frequency for various wavemakers 
with constant total volume. (Cut-off frequency Q, = 8.233; h / b  = 0.346; tank width b = 0.91 m.) 
Symbols are tank experimental data. 
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FIGURE 7. Nonlinear sloshing wave group propagation in the channel with various wavemaker 
strokes at frequency 1.299 Hz (cut-off frequencyf, = 1.308 Hz). (a)  The situation near tank resonance; 
(6) group speed; (c) group interval. 

t (s) t 6) 
FIGURE 8. Sloshing wave heights as a function of time at various locations along the channel with a 
wavenumber stroke of 6.35 cm at frequency 1.299 Hz (cut-off frequency f, = 1.308 Hz). (a) 
Experiment; (6) theory. 

in figure 5 that narrowing the tank decreases the sharpness of the B-peak, and for very 
narrow tanks causes the peak entirely to disappear. 

The damping factor, A,, = I;l/aw, is shown in figure 6 for the cone. The damping 
decay approaching 9, is due to the suppression of the planar wave, previously noted. 
The discontinuity across 9, is due to the propagation of the B-wave beyond 9, and not 
below it. Again, the effect on damping near SZ, is exaggerated in the case of wider tanks. 
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FIGURE 9. Sloshing wave heights as a function of time at various locations along the channel with a 
wavenumber stroke of 8.41 cm at frequency 1.299 Hz (cut-off frequency f, = 1.308 Hz). (a) 
Experiment; (b) theory (constant width); (c) theory (wavy width); ( d )  numerical solution for space- 
time evolution of IF1 : -, with constant tank width; . . . . . , with variation of width. 

7.2. Problem 11 
Kolaini (1989) showed that the heaving motion of the conical wavemaker ( b / D  = 2.7; 
d /b  = 0.23) near 52, generally resulted in the continuous intermittent propagation of 
sloshing wave groups downtank, see figure 7(a). Our major result here is to show that 
these experimental results are closely reproduced by the present theory, which contains 
no disposable parameters. 

An interesting phenomenon first noted by Kolaini is the suppression of the wave 
group propagation for strokes below a certain value and the linear increase of wave 
group speed with stroke above this value, see figure 7(b).  The present theory 
reproduces the experimental results well. The same is true of the amplitude, spacing, 
and shape of the groups, see figure 8(b) .  

With increasing stroke, Kolaini found that some of the wave groups become 
increasingly deformed in shape with increasing distance downtank. Utilizing the 
present nonlinear theory we have tested the hypothesis that these deformations might 
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x (m) 
FIGURE 10. Space-time evolution of IFI/IF(O, 7) I for the case of 140, T )  I = 7.62.  

be the result of small variations in tank effective width. The results of a simulation of 
the effect of width variations of 0.5% with a period of 4.4 tank widths is shown in 
figure 9(c). The resulting wave group shape deformations are suggestive of those 
actually measured, see figure 9 (a), and are certainly highly noticeable when compared 
to the case of uniform width, see figure 9(b). These results suggest the importance of 
tank precision in such experiments. 

The calculated results for large strokes, figure 9 (b),  also reproduce the vertical 
asymmetry of the measured wave group; this is a consequence of including the second- 
order solution. 

7.3. Problem 111 
Numerical calculations have been made for the same case as the experiment carried out 
by Kit et al. (1987) in a wave tank of 1.2 m wide and 0.6 m in water depth, where the 
wavemaker operated with the stroke (s) 0.49 cm at frequency 1.13736 Hz which is 
below the cut-off frequency (1.13795 Hz). The space step in the calculation was chosen 
as Ax = 0.1 m, and the time step (At) was 0.5 s .  In order to eliminate the influence of 
the far end of tank, the domain of calculation was substantially longer than in 
actuality. In our computation, the forced boundary condition was increased smoothly 
to its value, which removed small high-frequency oscillations in the solution. 

Using the boundary condition (6.8), the numerical iteration gives 0 1 ~  M 7.62, and 
produces the periodical wave groups (figure 10) with higher wave amplitude and a 
faster travel speed than the experimental result, as expected. 

Figure 11 shows the space-time evolution of the amplitude of the sloshing wave from 
the numerical calculation, for y = 0.76, where boundary condition (6.10) has been used 
and numerical iteration gives 0 1 ~  M 3.55. The direct comparison (figures 12 and 13) 
between numerical and experimental results gives reasonable agreement in the velocity 
(4.5 cm s-l numerically and 4 cm s-l experimentally) and periodicity (475 s numerically 
and 490 s experimentally) of the sloshing wave group. The amplitudes of the soliton 
also agree well between numerical and experimental results. 

There is a discrepancy between the numerical result and experimental observation in 
the space variation of the soliton shape. Although they show very much the same 
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FIGURE 11. Space-time evolution of IFI/IF(O, 7 )  I for the case of IF(0, T ) I  = 3.55. 
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FIGURE 12. Sloshing wave heights as a function of time at various locations 
along the channel - numerical solution. 

tendency and similar forms, the variation is more rapid in the experiment than in the 
numerical calculation, presumably due to incomplete modelling of the strong 
dissipative processes which occur at the wavemaker. 
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along the channel - experimental results (Kit et al. 1987). 

8. Discussion and summary 
The detailed success of the computations presented here in the case of heaving bodies 

demonstrates the utility of near-far field matching to deal with problems of wave 
generation in tanks by large and rather arbitrarily shaped bodies. The present paper 
shows, furthermore, how to carry out the matching. 
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The results obtained in the linear case confirm many of the findings of Yeung & 
Sphaier (1989a, b) concerning the strong effect of tank walls on the added mass and 
damping of oscillating bodies. Our own interest in the linear calculation of the planar 
propagating wave was motivated by the experimental finding of Kolaini (1989) that 
this wave disappeared at the first symmetric cut-off frequency in the case of a cone of 
76" total angle with a diameter/tank width ratio about 0.36. This striking observation 
was confirmed by the linear computations. But they also revealed that disappearance 
could occur at subcritical frequencies for bodies elongated in the downtank direction. 
There is clearly more to learn about these phenomena in tanks, and it would seem 
important to do so for the proper interpretation of wave-induced forces on bodies in 
tanks. 

When oscillating a body near the first symmetric resonance, large sloshing waves can 
be generated near the body, which intermittently leave it to propagate downtank as a 
wave group. These had previously been observed and studied by Kit et al. (1987). 
Kolaini (1989) has measured these wave groups and found that they were generated 
only for sufficiently large heaving strokes, and that they propagated with speeds 
increasing linearly with further increase in stroke. The theoretical prediction of these 
properties has not been possible based on previously existing theory. It was for this 
reason that we instituted the near-far field approach, involving a boundary element 
computation in the near field based on nonlinear boundary conditions on the body and 
the free surface. This approach seems to have succeeded, as not only do the calculations 
result in propagating wave groups without the introduction of viscous dissipation, but 
the qualitative behaviour of these groups is reproduced surprising well. This sets the 
stage for the computational studies of such wave groups. It needs to be mentioned, 
however, that since the computation for a complete run (7000 time steps) requires 
10 h CPU time on an IBM 9000, so the wave tank seems an equally efficient research 
tool. 

For a wavemaker with relatively simple geometry, such as a segmented flap 
wavemaker which has small displacement around the back wall (x = 0), a proper 
boundary condition for sloshing wave can be found through energy balance. 
Reasonable agreement has been shown between measurements and predictions. 

We would like to further point out that the boundary condition, (9.8) or (9. lo), arises 
through direct forcing of the sloshing wave by the wavemaker. This boundary 
condition is equivalent to the specification of the boundary condition as a$/az= 
f l y ,  z ,  t) or a$/ay = f(y, z ,  t). If a segmented moving bottom (wavemaker) vertically 
oscillates near the cut-off frequency, the boundary condition for the sloshing wave will 
also have the same form as (9.8). 

Finally we should note that the propagation of directional modes by heaving shaped 
bodies between tank walls can be used for the generation of directional seas in narrow 
wave tanks for testing purposes, as suggested originally by Tulin & Kolaini (1988), and 
that we have utilized specially shaped wavemakers, driven stochastically, in our 
laboratory. 
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Appendix. Non-planar linear progressive waves generated by a paddle 
wavemaker 

We consider here, in a narrow deep wave tank of breadth b, the generation of linear 
progressive waves which are driven by a special paddle-type wavemaker with a 
particular prescribed motion preventing the generation of a planar progressive wave, 

Y. Yao, M .  P. Tulin and A .  R.  Kolaini 

2 = - s cos k,  y" eki cos wl, (A 1) 
where k, = 2x/b,  and the tilde denotes a dimensional variable. Thus, 

= ws cos k ,  y" elCi sin or = Re {iws cos k ,  y" elCi e-'"' 1. (A 2) - 
an 

Using a Green's function representation and the method of images, which uses 
infinite mirror images to eliminate the walls, the velocity potential @ = Re {4 e-iwF} can 
be represented by the summation of potentials generated by three-dimensional periodic 
oscillating sources of strength, o(O,E, 7) e-'"', located at the backwall (x = 0), in the 
range of - 03 to 0 in 7 and - co to + 03 in E. The normal velocity of the wavemaker 
projected on the backwall determines the strength of the sources. 

(A 3) 
1 a5J g ~ ( 0 ,  [, 7) = - = - iws cos k, 5 ekv. 

an 

The spatial velocity potential is given by 

The Green's function, G, which satisfies the linearized free-surface condition and 
radiation condition, is 

G(2, y", z",O,[, 7) = - + - + 2k PV J: - em(8+v) J,(mR) dm + i2xk ek@+v) J,(kR), 

(A 5)  

where r and rl are the distances from (3,y",Ej to (0,&7) and its image ( O , f ,  -7), 
respectively, k is the wavenumber corresponding to the frequency w,  J ,  is a Bessel 
function : 

1 1  1 
r rl m - k  

where R = [2z+(y"-Qz]"2. (A 7) 

Knowing that only the last term in G, (A 5 ) ,  can contribute to the progressive wave, 
we can examine the progressive wave by substituting the last term of G in (A 5 )  into 
(A 4). The velocity potential, 8, for progressive wave is, therefore, 

+(eikiE+ e-ik 1 9  J,[kR(OI a. (A 8) J-:: $ = sok/- ek? ek(f+?) d7 
000 

Now we only consider the case in which the wavemaker is operating near the cut- 
off frequency, that is, k is very close to k,. We assume that kb (= 2x) is sufficiently 
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large, so that the asymptotic evaluation of the second integral in (A 8) can be found 
by applying the method of stationary phase; that leads to 

(A 9) 

(A 10) 

S O  
1/2 cos k, y" eki exp [i(k2 - k?)lj2 21, 4"'- 

(k2 - k,) 

SO 
cos k, y" elCi cos [(k2 - k;)1/2 ,f - Gt]. @! - 

(k2 - kf)1'2 

Using the same dimensionless form as in $2 and small parameter A', (4.9, equation 
(A 9) becomes 

Adopting the same parameters E and A, as (2.1) and (4.10), 

k2 - k; (k2 - k?)l/' 
= (2A)%, 

k 
E = ~ s ;  A=- . so 

2k2s2 ' 
(A 10) becomes 

cos ( Y )  ez cos [(2A)'l2 EX- t]. (A 13) 
1 

@=- 
(2A)'/2 € 

The asymptotic evaluation of the integral in (A 8) shows that the velocity potential 
at ( 2 , j ,  2) has contributions only from sources around (0, &,, q),  and the effects of all 
other sources cancel each other, where 

In the derivation, we also made an asymptotic expansion, 

So the asymptotic solution q&' is the appropriate solution for the progressive wave only 
when (kb)[R(&,)/b] is large, that is when [R(&)/b] is of at least 0(1), or 

This shows that the stationary progressive wave will be formed very close, a distance 
of 0[2[1~(2A)l/~ €1, to the wavemaker as the wavemaker frequency approaches the cut-off 
frequency. 

According to (A 8), the downtank velocity in the progressive wave at the wavemaker, 
a@/aIlE-,, is identically zero, so that the boundary condition for the downtank 
velocity must be satisfied by the decaying wave in linear theory. On the other hand, 
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according to (A 1 l), the downtank velocity of the progressive wave in the outer field 
(x 2 xmin) is of O( 1). 

This shows that the downtank velocity in the progressive wave changes by O(1) 
within a distance of 0[2x(2h)'" €1; i.e. a velocity boundary layer exists at the wavemaker 
within the propagating wave field. The change in the potential itself, across this 
boundary layer, is, however, of higher order, a$'/$' TZ 0(4ne2h).  As a result, the outer 
field potential and pressure may be applied on the wavemaker, although the downtank 
velocity may not be. 

The transverse velocity on the wavemaker and on the outer field is, according to 
(A 1 l), of O[ 1 /(2h)''' 4 so that it becomes unsuitably large for h of O(1) or less, since 
nonlinear terms will exert their influence. For this reason, a nonlinear analysis is 
necessary. 
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